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Hierarchical Ascendant Classification (HAC)

Hierarchical Ascendant Classification (HAC), often referred to as Hierarchical
Clustering, is a clustering technique used to group similar data points into clusters.
Unlike methods that create clusters all at once (like k-means clustering), HAC is a
hierarchical approach that builds a tree-like structure (called a dendrogram) by
gradually merging or splitting clusters. The result is a nested set of clusters that
provides insight into the hierarchical relationships among the data points (or objects).

Key Characteristics of Hierarchical Ascendant Classification (HAC)

1. Agglomerative Approach:

o HAC typically follows an agglomerative approach, which means it starts
with each data point as its own individual cluster.

o Clusters are then merged step-by-step in a "bottom-up" manner, based on
their similarity, until all data points are combined into a single cluster.

2. Dendrogram:

o HAC builds a dendrogram, a tree-like diagram that shows the merging
process and represents the hierarchy of clusters.

o By "cutting" the dendrogram at different levels, you can get different sets
of clusters.

3. Similarity and Distance Measures:

o HAC requires a measure of similarity or dissimilarity between data points,
often expressed as distance.

o Common distance measures include Euclidean distance, Manhattan
distance, or cosine similarity.

o The choice of distance metric affects the clusters and may depend on the
nature of the data.

4. Linkage Criteria:

o To decide how to merge clusters, HAC uses linkage criteria, which
measure the distance between clusters:

= Single Linkage: Uses the smallest distance between points in
different clusters.

= Complete Linkage: Uses the largest distance between points in
different clusters.

= Average Linkage: Uses the average distance between all points in
the clusters.

= Ward’s Method: Minimizes the total within-cluster variance by
merging clusters that lead to the smallest increase in variance.
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How HAC Works

1. Initialize Clusters:
o Begin with each data point as an individual cluster (if there are nnn data
points, start with nnn clusters).

2. Calculate Distances:
o Compute the pairwise distances between all clusters based on the selected
distance metric.

3. Merge Clusters:
o Find the two clusters that are closest to each other based on the linkage
criterion and merge them into a single cluster.

4. Update Distances:
o Recalculate the distances between the new cluster and all remaining
clusters.

5. Repeat:
o Continue merging clusters step-by-step until there is only one cluster
containing all data points. Each merge forms a branch in the dendrogram,
creating a hierarchy of clusters.

6. Choose the Number of Clusters:
o Once the dendrogram is complete, you can "cut" it at a chosen level to
obtain a desired number of clusters.
o The optimal number of clusters can be selected by looking for large gaps
between levels in the dendrogram or using criteria like the silhouette
score.

Advantages of HAC

o Hierarchical Insight: HAC gives a full hierarchy of clusters, which can be helpful
for understanding nested patterns within data.

e No Need to Predefine the Number of Clusters: Unlike kkk-means, HAC does
not require specifying the number of clusters in advance.

o Flexibility: HAC works well with different distance metrics and linkage methods,
allowing for flexibility in adapting the algorithm to various types of data.

Disadvantages of HAC

o Computational Complexity: HAC can be computationally expensive, especially
for large datasets, as it requires calculating and updating distance matrices.

o Sensitivity to Noise and Outliers: Hierarchical clustering is sensitive to outliers,
which may affect the quality of clustering.
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Interpreting the Dendrogram

The dendrogram visually represents the hierarchical clustering process:

o Height of Merges: The height at which two clusters merge in the dendrogram
represents the distance or dissimilarity between them. Clusters that merge at
lower heights are more similar to each other.

e Choosing a Threshold: By selecting a threshold or “cutting” the dendrogram at a
specific height, you can create a set number of clusters. For instance, a higher cut
will produce fewer, broader clusters, while a lower cut will yield more, finer
clusters.

See also the document entitled “8d. Hierarchical Ascendant Classification -
illustrated.pdf” where you will find the step by step approach and illustrations.
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